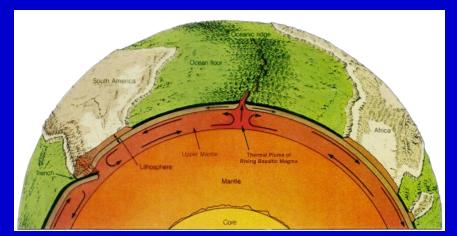


Understanding the Nature of Floating Rock



Introductory Oceanography

Ray Rector - Instructor

Crust Mantle Density Relationship

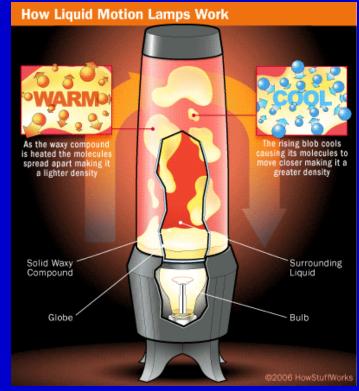
Topics of Inquiry

- 1) Concepts of Density and Buoyancy
- 2) The Layered Nature of the Earth
- 3) Isostatic Dynamics Equilibrium vs. Adjustment

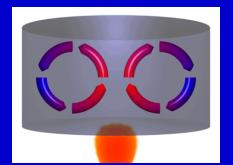
Isostacy Laboratory

- 4) Modeling Isostasy in Lab
- 5) Applying Isostasy Models to Earth Systems

Inquiry of Lava Lamp Motion


Density, Gravity and the Convection Process

 ✓ Differential Heating of a Fluid Under the Influence of Gravity:
 Fluid material at bottom of lamp is overheated; material at the top of lamp is under-heated (cooler).


✓ Hotter material is less dense than cooler material

✓ Less dense fluid rises while more dense fluid sinks

✓ Heat and gravity drive the movement in the system

Convection Process

Concept of Density

- 1) Density is an important intensive property
- 2) Density is a function of a substance's mass and volume
- 3) The density of a substance is a measure of how much mass is present in a given unit of volume.
 - The more mass a substance has per unit volume, the greater the substance's density.
 - The less mass a substance has per unit volume, the lesser the substance's density.

$$Denisty = \frac{mass}{volume} \quad or \quad D = \frac{m}{v}$$

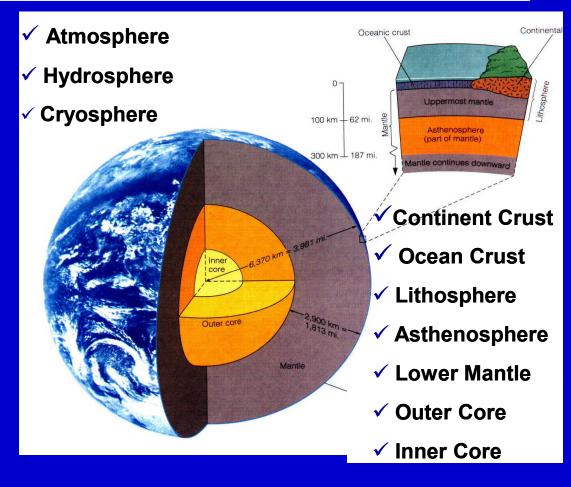
4) Gravity controls the weight of a given volume of a substance, based on the substance's density

- \succ The more dense the material, the heavier it weighs.
- \succ The less dense the material, the less it weighs.

Periodic Table of Elements

Elements - Mass and Density

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 1 H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	C Solid			[Metals][Nonmetals								2 K
2	3 ² Li Lithium 6.941	4 22 Be Beryllium 9.012182	Hg Liquid H Gas Rf Unknown			Alkaline earth metals Alkali metals		Lanthanoids		Poor metals	Other nonmetal	Noble ga	5 3 B Boron 10.811	6 24 C Carbon 12.0107	7 ² N Nitrogen 14.0087	8 26 O Oxygen 15.9994	9 ² 7 F Fluorine 18.9984032	10 28 Neon 20.1797	28 K L
3	11 28 Na Sodium 22.98976928	12 28 Mg Magnesium 24.3050				Actinoids ^그 혋			tals	<u></u>	gases	13 ² Al Aluminium 26.9815386	14 28 Silicon 28.0855	15 2 P Phosphorus 30.973782	16 ² S Sulfur 32.085	17 28 Cl Chlorine 35.453	18 28 Ar Argon 39.948	28 K L M	
4	19 28 K 1 Potassium 39.0983	20 28 Ca Calcium 40.078	21 28 Sc 22 Scandium 44.955912	22 28 Ti ¹⁰ ² ¹⁰ ² ²	23 28 V 11 Vanadium 50.9415	24 28 Cr 13 Chromium 51.9981	25 Mn Manganese 54.938045	² ² ² ² ² ² ² ² ¹⁴ ² ¹⁴ ² ¹⁴ ²	27 28 Co 28 Cobalt 58.933195	28 28 28 28 28 28 28 28 28 28 28 28 28 2	29 Cu ^{Copper} 63.546	² 30 ² 30 ² 30 ¹⁸ Zn ¹⁸ ² Zn ² 30 ² 30 ¹⁸ ¹⁸ ² ² 30 ¹⁸ ² ² ³⁰ ² ³⁰ ² ³⁰ ² ³⁰ ²⁰ ²⁰ ¹⁰ ²⁰ ²⁰ ²⁰ ²⁰ ²⁰ ²⁰ ²⁰ ²	31 28 Ga 3 Gallium 69.723	32 28 Ge 4 Germanium 72.84	33 28 As 18 Arsenic 74.92180	34 28 Se 6 Selenium 78.96	35 28 Br 7 Bromine 79.904	36 Kr Krypton 83.798	K LMN
5	37 28 Rb 18 18 18 18 1 18 1 18 1 18 1 18 1 18 1 18 18	38 28 Sr Strontium 87.62	39 28 Y 92 Yttrium 88.90585	40 28 Zr 10 21/224	41 28 Nb 12 Niobium 92.90838	42 28 Mo 13 Molybdenum 95.96	43 Tc Technetium (97.9072)	² ⁸ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	45 28 Rh 16 102.90550	46 28 Pd 18 Palladium 106.42	47 Ag ^{Silver} 107.8882	48 28 Cd 18 Cadmium 112.411	49 28 In 18 Indium 114.818	50 28 Sn 18 Tin 118.710	51 28 Sb 18 Antimony 121.780	52 28 Te 18 Tellurium 127.60	53 28 18 18 18 7 Iodine 128.90447	54 28 Xe 18 Xenon 131.293	28888880
6	55 2 Cs 18 Caesium 1 132.9054519	56 2 Ba 18 Barium 2 137.327	57–71	72 2 Hf 322 Hafnium 2 178.49	73 28 Ta 18 Tantalum 180.94788	74 28 W 18 Tungsten 183.84	75 Re Rhenium 186.207	² ⁸ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	77 28 Ir 18 18 18 18 18 18 18 18 18 18 18 18 18 1	78 28 Pt 30 Platinum 1 195.084	79 Au ¹ Gold 196.968569	80 2 80 2 82 Hg 32 1 Mercury 2 200.59	81 8 TI 18 322 Thallium 3 204.3833	82 28 Pb 322 Lead 4 207.2	83 28 Bi 18 Bismuth 208.98040	84 28 Po 18 Polonium (208.9824)	85 28 At 322 Astatine 7 (209.9871)	86 28 Rn 32 Radon (222.0178)	288 828 828 828 828 828 828 828 828 828
	87 2 Fr 32 Francium 2 (223)	88 2 Ra 32 Radium 2 (228)	89–103	104 28 Rf 322 Rutherfordium 10 (281)	105 28 Db 322 Dubnium 211 (282)	106 28 Sg 32 Seaborgium 22 (288) 22	107 Bh Bohrium (284)	² ⁸ ¹⁰⁸ ¹⁸ ¹⁸ Hs ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸	109 28 Mt 18 Meitnerium 15 (288) 2	110 Ds Darmstadtium (271)	111 Rg Roentgenium (272)	112 22 32 32 32 32 32 32 32 32 32 32 32 32	113 Uut Ununtrium (284) 113 18 18 18 232 18 18 18 18 18 18 18 18 18 18	114 28 Uuq 32 Ununquadium 4 (289)	115 28 Unupentium 222 (288) 25	116 28 Uuh 32 Ununhexium 16 (292)	117 Uus Ununseptium	118 Uuo Ununoctium (294)	KLMNOPQ

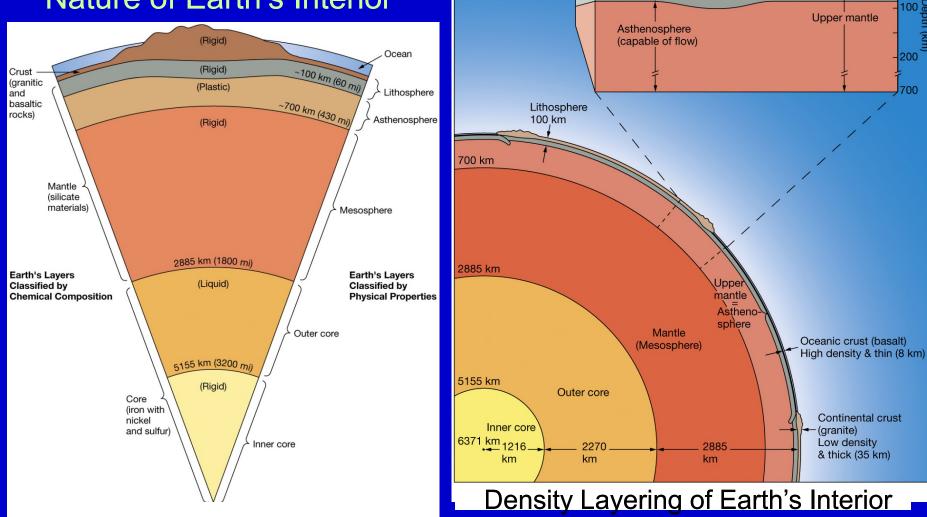

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

			Design and Interface Copyright © 1997 Michael Dayah (michael@dayah.com). http://www.ptable.com/												
	57 28 La 18 Lanthanum 138.90547	58 Ce Cerium 140.118	59 28 Pr 21 Praseodymium 2 140.90785	60 28 Nd 18 Neodymium 22 8 2 2 8 2 2 8 8 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8	61 28 Pm 28 Promethium 23 23 23 23 23 23 24 24 25 25 25 25 25 25 25 25 25 25	62 28 Sm 24 Samarium 150.38	63 28 Eu 25 Europium 25 151.984	64 28 64 28 18 25 92 2 3dolinium 157.25	65 28 Tb 27 Terbium 22 158.92535	66 28 Dy 28 18 28 28 28 28 28 28 28 28 28 2	67 28 Ho 18 Holmium 184.93032	68 28 Er 30 18 Erbium 2 187.259	69 28 Tm 18 Thulium 168.93421	70 28 Yb 32 Ytterbium 173.054	- 18
	89 28 Ac 18 Actinium 9 (227) 2	90 Th 232.03806	91 28 Pa 20 Protactinium 22 231.03588	92 28 U 18 Uranium 9 238.02891 2	93 28 Np Neptunium 92 (237)	94 28 Pu 24 Plutonium 22 (244) 2	95 28 Am 18 Americium 22 (243) 25	96 28 Cm 25 Curium 92 (247) 2	97 28 Bk 32 Berkelium 8 (247) 2 2 3 2 2 3 2 2 7 8 2 2 2 2 2 2 2 2 2 2 2 2 2	98 28 Cf 32 Californium 8 (251) 28	99 28 Es 32 29 Einsteinium 8 (252) 29	100 28 Fm 322 500 500 500 500 500 500 500 5	101 28 Md 32 Mendelevium 6 (258)	102 28 No Nobelium 28 (259)	103 2 Lr 32 Lawrencium 9 (262)

Earth's Layered Structure

1) The Earth is Vertically Arranged into Ten Density Layers

- 2) Each Layer has Unique Physical and Chemical Properties
- 3) Layers are Arranged According to Density Value, as Controlled by Gravity

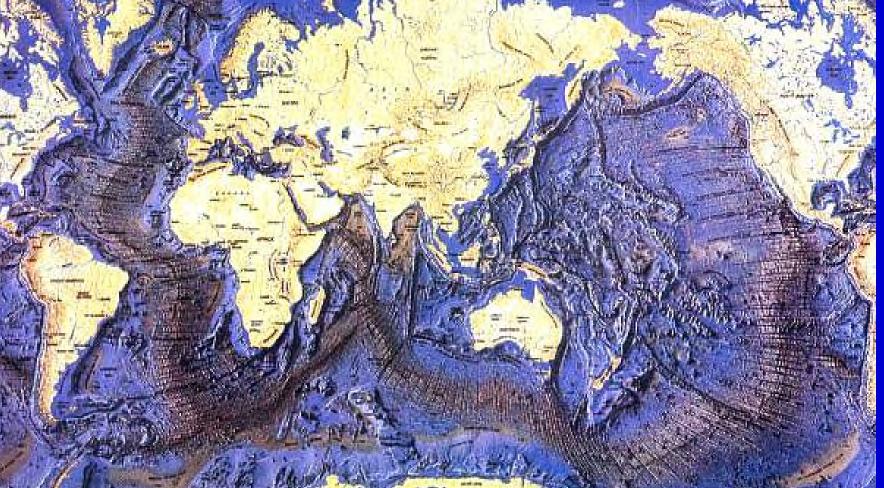


- 4) Densest Solid = Core
- Least Dense Solid = Crust

Earth's Interior

Chemical and Physical Nature of Earth's Interior

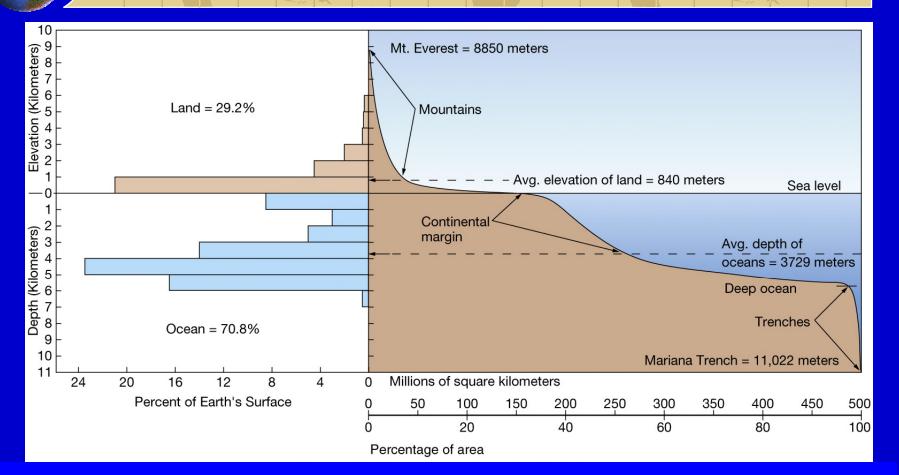
Copyright © 2005 Pearson Prentice Hall, Inc.


Oceanic crust

100 pth

Continental crust

_ithosphere (rigid solid)



Large-Scale Ocean Bottom Features

- ✓ Continental shelf, slope, and rise
- ✓ Abyssal plains and hills
- ✓ Mid-ocean ridge and rift valley
- ✓ Oceanic islands, seamounts, and guyots
- ✓ Ocean trench

Elevation Relief Profile of Earth's Crust

- Sea level
 Continental shelf
 Continental slope
 The deep ocean floor
- 5. Mean depth of ocean 3700m
- 6. Mean altitude of land 840m
- 7. Mt. Everest 8848m
- 8. Mariana Trench 11022m

Earth's Continents and Ocean Basins

1) Two Different Types of Crust

- ✓ Continental Granitic
- ✓ Oceanic Gabbroic

2) Continental Crust

- ✓ Lighter (2.7 g/ml)
- ✓ Thicker (30 km)
- ✓ High Standing (1 km elev.)

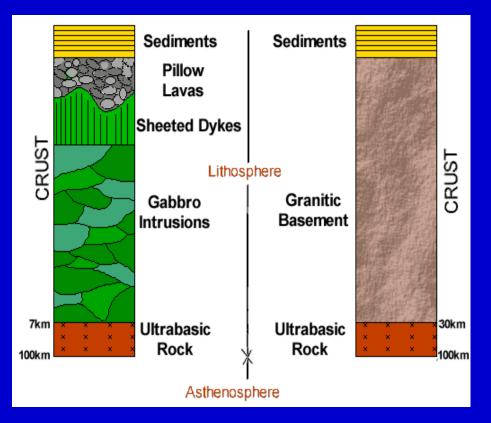
3) Oceanic Crust

- ✓ Denser (2.9 g/ml)
- ✓ Thinner (7 km)
- ✓ Low Standing (- 4 km elev.)

1) Two Different Types of Crust

- ✓ Continental = Granitic
- ✓ Oceanic = Gabbroic

2) Continental Crust

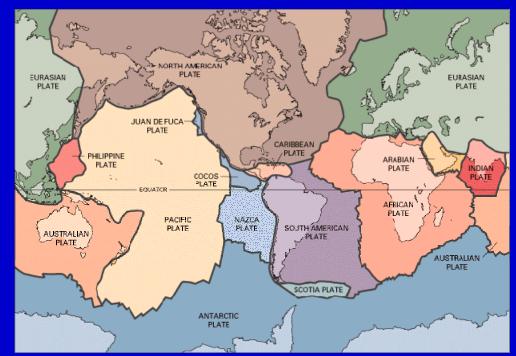

- ✓ Lighter (2.7 g/ml)
- ✓ Thicker (30 km)
- ✓ High Standing (1 km elev.)

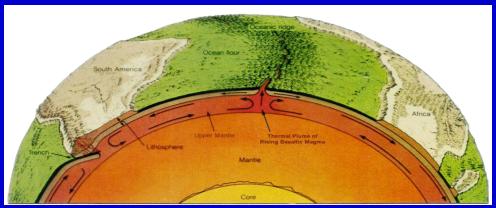
3) Oceanic Crust

- ✓ Denser (2.9 g/ml)
- ✓ Thinner (7 km)
- ✓ Low Standing (- 4 km elev.)

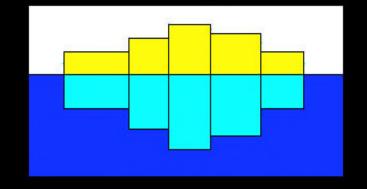
Oceanic Crust Gabbroic Rock

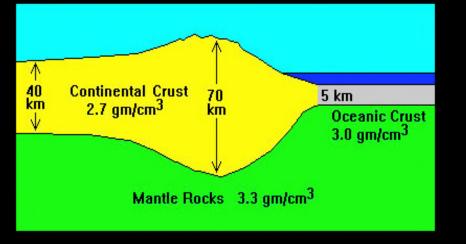
Continental Crust Granitic Rock




Key Features:

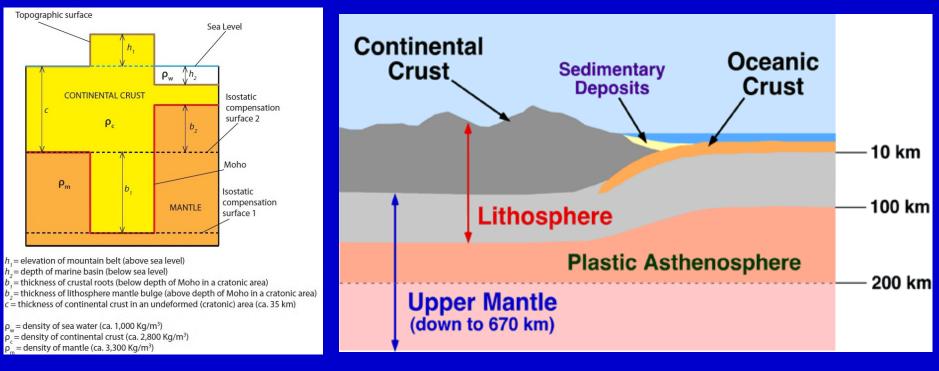
- ✓ 6 Major Plates
- ✓ 8 Minor Plates
- 100 km thick
- ✓ Strong and rigid
- ✓ Plates float on fluid asthenosphere
- ✓ Plates are mobile


✓ Plates move at a rate of centimeters per year



Earth's Lithospheric Plates

lsostasy



Wooden blocks of different sizes float to different heights (and depths) in equilibrium with the water it floats in.

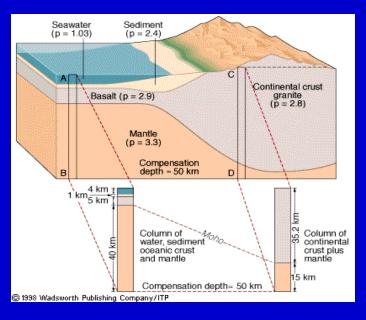
Likewise, continental and oceanic crust are in equilibrium, floating on the asthenosphere in the upper mantle.

The density of rocks in continental crust are less dense than rocks in oceanic crust.

Isostasy: Crust *Floating* in Mantle

1) Isostatic Equilibrium Between Crust and Mantle; Lithosphere and Asthenosphere

2) Isostatic Adjustments Made Over Geologic Time When A Layer's Density and/ or Thickness Changes

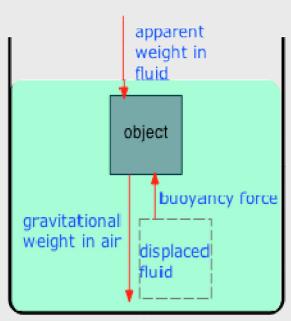

4) Isostatic Adjustments Produce Vertical Movement of Crust – Uplift or Subsidence

Defined: state of gravitational equilibrium between the earth's *rigid* lithosphere and *fluid* asthenosphere, such that the tectonic plates "float" in and on the underlying mantle at height and depth positions controlled by

plate thickness and density.

The term "isostasy" is from Greek "iso" = equal; "stasis" = equal standing.

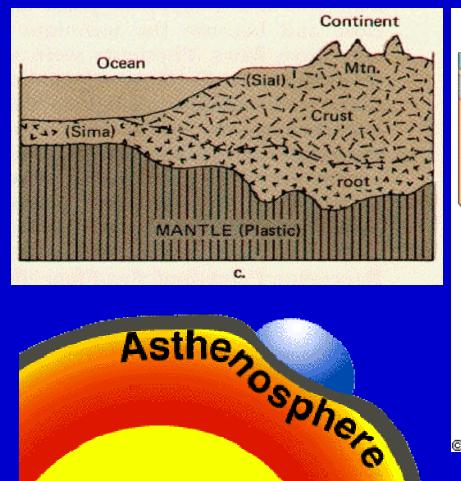
Earth's strong rigid plates exert a downward-directed load on the mobile, underlying weaker, plastic-like asthenosphere – pushing down into the mantle.

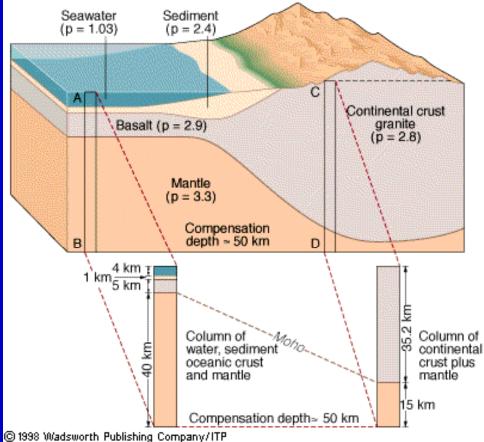

> The asthenosphere exerts an upward pressure on the overlying plate equal to the weight of the displaced mantle - *isostatic equilibrium* is established.

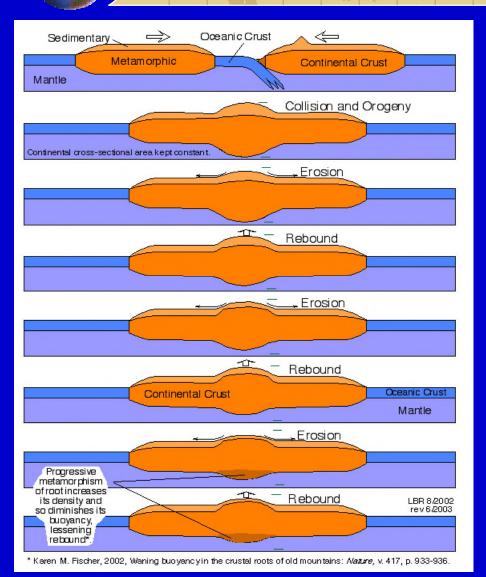
Mantle will flow laterally to accommodate changing crustal loads over time – this is called *isostatic adjustment*

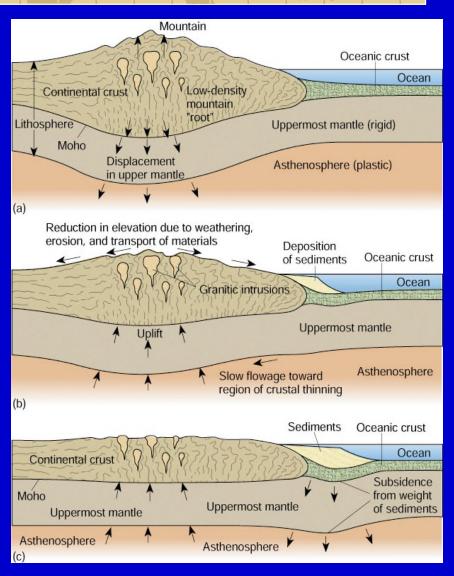
Plate tectonics, erosion and changing ice cap cause isostatic disequilibrium

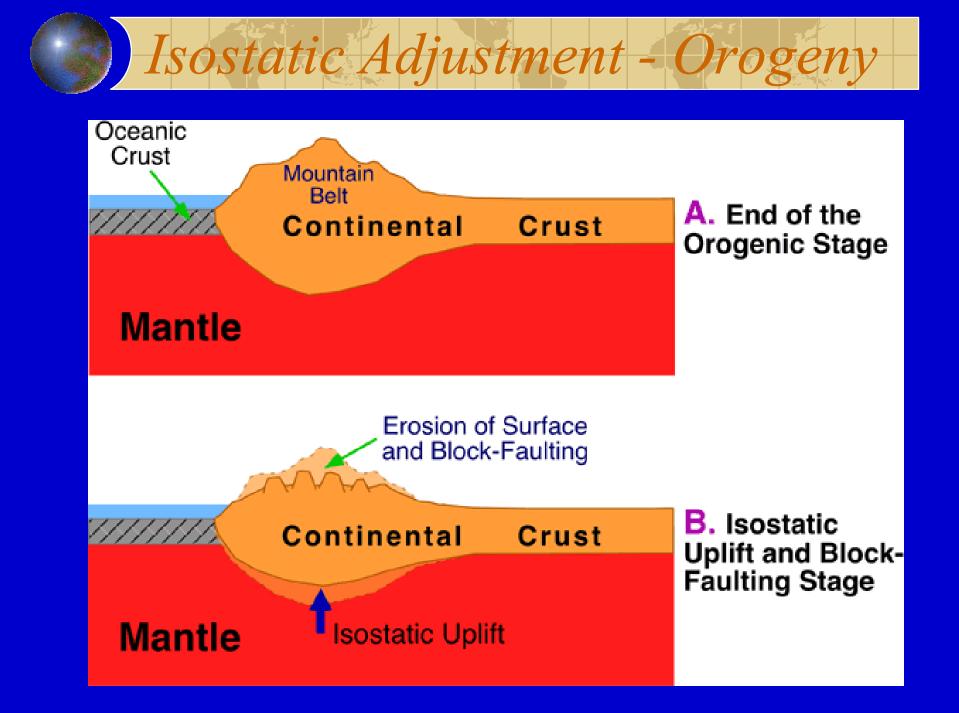
- 1) Buoyancy is an important force on objects immersed in a fluid.
- 2) Buoyancy is the fluid pressure exerted on an immersed object equal to the weight of fluid being displaced by the object.
- 3) The concept is also known as Archimedes's principle
 - Principle applies to objects in the air and on, or in, the water.
 - Principle also applies to the crust "floating" on the mantle, which is specially termed "isostacy".
- 4) Density is a controlling factor in the effects of buoyancy between an object and its surrounding immersing fluid
 - The greater the difference in density between the object and the fluid, the greater the buoyancy force = sits high
 - The lesser the difference in density between the object and the fluid, the lesser the buoyancy force = sits low



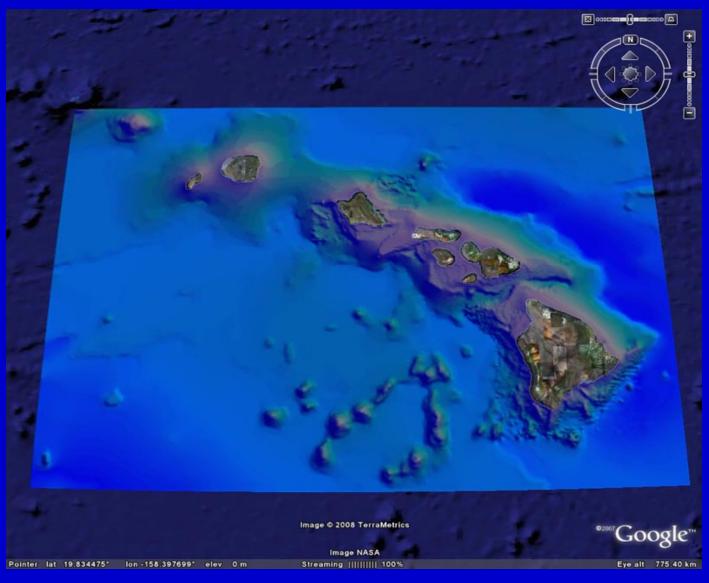

Example of Buoyancy: Boat on a Lake


What is the density of the boat with cat in relation to the lake water?

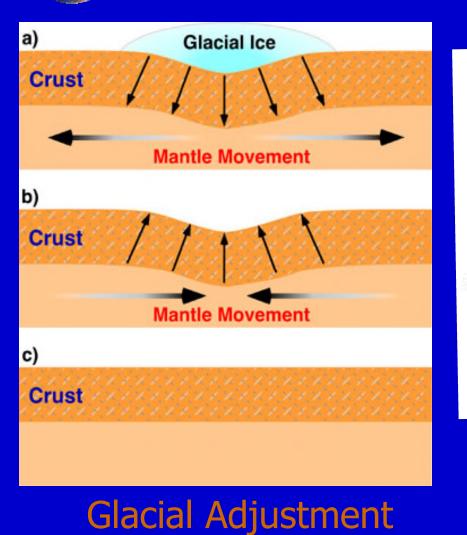

The Isostatic Equilibrium

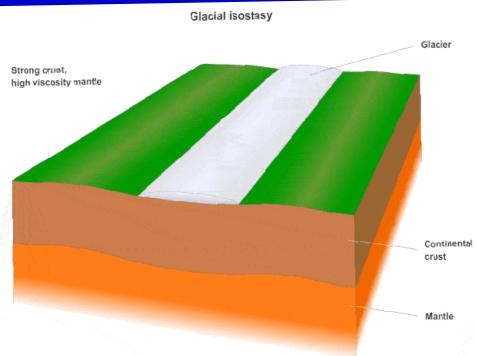


Isostatic Adjustment - O

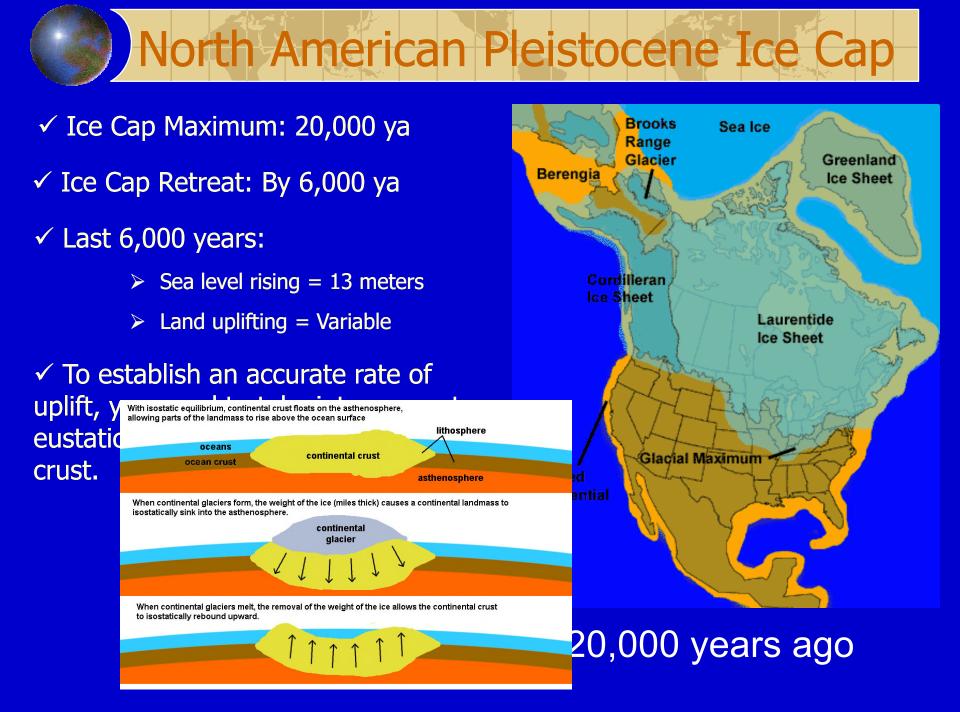


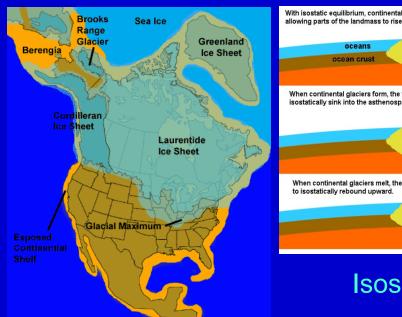
Isostatic Loading and Rebound – Orogeny and Erosion

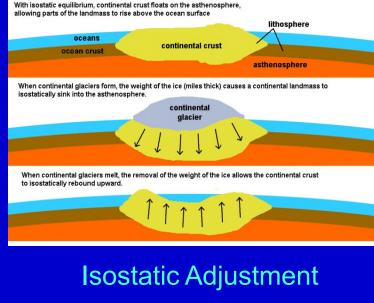



Isostatic Adjustment – Volcanism

Growth of the Hawaiian Islands – Crustal Depression

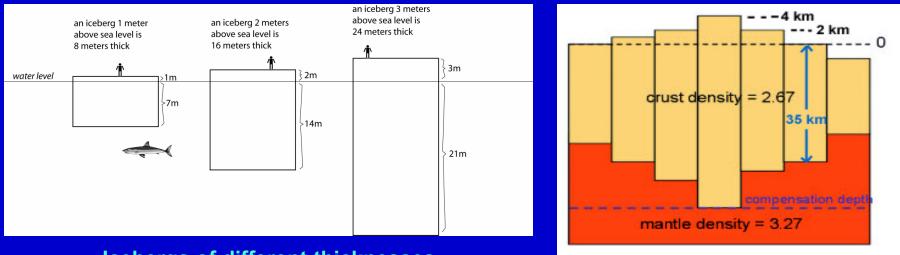

Isostatic Adjustment –




Ice Caps

Isostatic Response to Changing Ice Thickness

North American Pleistocene Ice Cap


Ice Cap Maximum: 20,000 ya

Ice Cap Retreat: Today

- ✓ Land around Hudson Bay 150 meters higher (above sea level), compared to 6000 years ago. Global sea level also rose 13 meters.
- \checkmark To establish an accurate rate of uplift, you need to add rise in sea level to uplift amount to get true amount of uplift.

Isostatic Equilibrium and Thickness

- The One to Eight Rule -

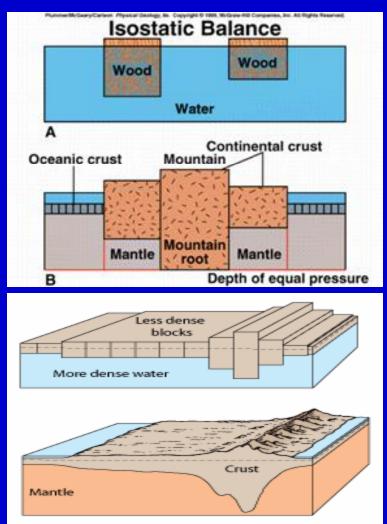
Icebergs of different thicknesses

Crust of different thicknesses

1) For icebergs and continental crust, apply the **1-to-8 rule**, assuming ice or continental crust is in isostatic equilibrium.

2) Continental crust at **sea level** averages about <u>35 kilometers thick</u>. (1 km = 0.6 miles.)

 3) How thick must the crust be to support a: 1-kilometer high mountain belt? 2-kilometer high mountain belt? km 5-kilometer high mountain belt?


Using Wood Blocks and Water to Understand the Key Concepts of Isostatic Equilibrium and Adjustment

- Density of Floating Blocks
- Thickness of Floating Block
- Density of Liquid Water

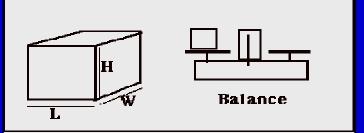
The Lab Model:

- 1) Hardwood as Ocean Crust
- 2) Redwood as Continental Crust
 - Thick = Mountains
 - Thin = Low-lying Regions

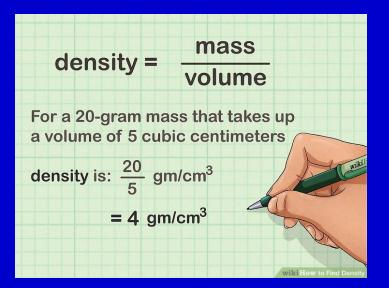
3) Water as the Underlying Mantle

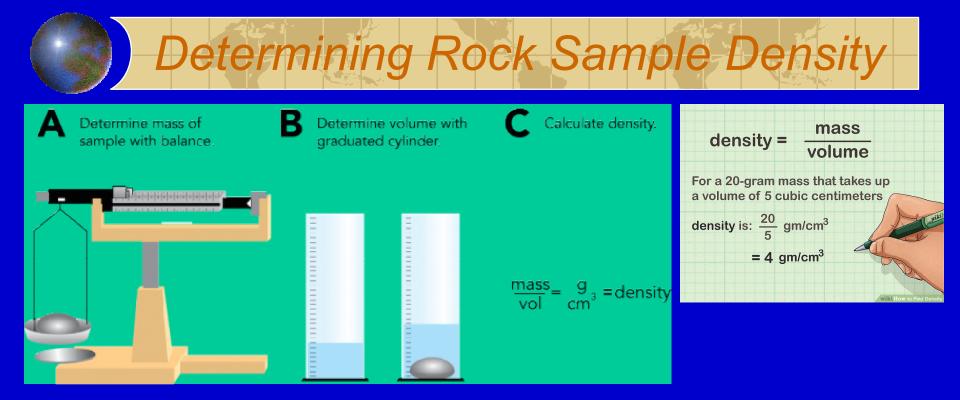
Determining Material Densities

Metal and Wood Block Densities:


1) Determine Mass (grams) with flattop scale.

2) Determine Volume (cubic cm) with ruler

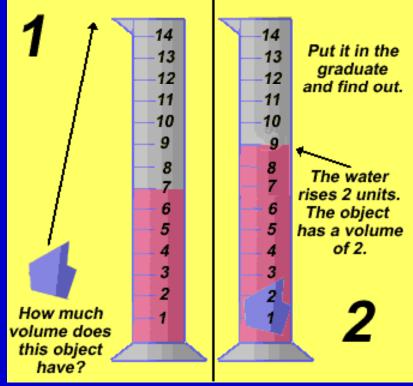

Length x height x width


3) Only measure the thick redwood block and oak blocks

$$Denisty = \frac{mass}{volume} \text{ or } D = \frac{m}{v}$$

Rock Densities:

- 1) Determine Mass (grams) with flattop scale
- 2) Determine Volume (cubic cm) with graduated cylinder
 - ✓ Displacement method
- 3) Calculate Density by Dividing Mass by Volume



1) Useful for determining the volume of irregular solid objects.

The Water Displacement Method

- 2) You need a graduated cylinder and water.
- 3) An object's volume will displace an equal volume of water in the graduated cylinder.

<u>The Lab Model:</u>1) Dark Rock as Ocean Crust2) Light Rock as Continental Crust

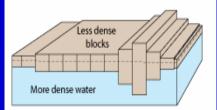
Step 1 – Weigh dry rock sample

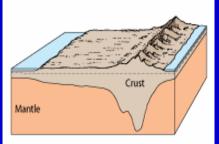
Step 2 – Fill 300 ml beaker with ³/₄'s full of water and weigh

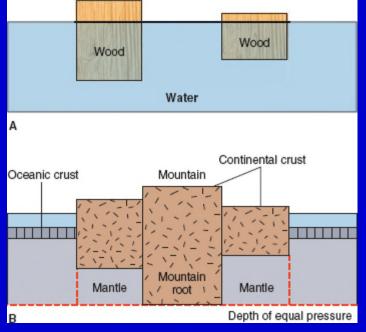
Step 3 – Place dry rock sample (in mesh bag) into beaker and reweigh

Step 4 – Place bag with rock in beaker of water and reweigh

Step 5 – Calculate difference in weights = equals the sample volume

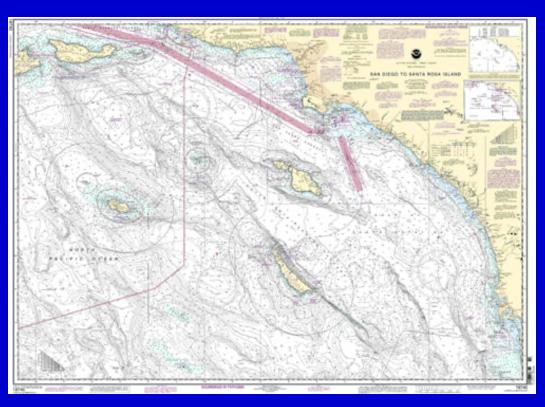



Step 6 - Calculate the density of the sample by dividing the sample mass (in g) by the volume (in cm₃).


Density/Thickness – Buoyancy Relationship

Modelling Wood Block Behavior in Water:

- 1) Density of wood in relation to water density determines level of buoyancy: (percentages in/out of water)
- 2) Thickness of block determines absolute height of block in and out of water
- 3) Compare redwood and oak wood blocks floating in water to that of continental and oceanic crust floating the mantle
- 4) Keep in mind the differences in BOTH *density* and *thickness* of the two different blocks and the two different types of crust
- 5) Note that high-standing floating objects require a much deeper bottom portion to maintain (hold up) the high-standing portion.



Maps and Charts Lab

Preparation:

Study PowerPointStudy Worksheet

Make sure to bring your workbook

